Please switch off AdBlock for this webside to display it correctly (there are no ads here).
Broadened polynominal function
modelname
Poly|Polynominal|Polynom
Unbroadened imaginary part of complex dielectric function is described by polynomial function of \(K\) order
in the spectral region from \(E_{\rm l}\) to \(E_{\rm u}\) :
$$
\begin{array}{lcl} \displaystyle
\varepsilon_{\rm i}(E) = N \sum_{n=0}^{K} A_n \left( \frac{E}{E_{\rm u}+E_{\rm l}} \right)^n & \mbox{for} & E_{\rm u} > E > E_{\rm l} \\
\varepsilon_{\rm i}(E) = 0 & \mbox{for} & E \le E_{\rm l} \quad \mbox{or} \quad E \ge E_{\rm u}
\end{array}
$$
where \(N\) is transition strength parameter. \(A_1, A_2,\dots\) are parameters detrminig shape of the polynominal function (\(A_0\) is not free parameter).
Parameter \(A_0\) is chose that the following sum rule integral is valid
$$
\int_0^\infty E \varepsilon_{\rm i}(E) \, {\rm d}E = N .
$$
attributes
-
order_of_polynom - Define order of the polynom.
-
Lorentz - Lorentz broadening.
-
Gauss - Gauss broadening (default).
-
FWHM - In case of Gauss broadening the parametr \(B\) means FWHM instead RMS.
-
ph - Use reciprocal cm instead eV units for \(E_{\rm l}\) and \(E_{\rm u}\).
Example
media:
f = Poly:2
newAD2> par
Nf = 0 fixed [0,inf) eV2
Elf = 1 fixed (0,inf) eV
Euf = 2 fixed (Elf,inf) eV
Bf = 1 fixed (0,inf) eV
A1f = 0 fixed (-inf,inf) eV-2
A2f = 0 fixed (-inf,inf) eV-2
newAD2>