| změnit na češtinu
Please switch off AdBlock for this webside to display it correctly (there are no ads here).

newAD2 - optical characterization software

Classical Drude-Lorentz model (damping harmonic oscillator)

modelname

Lorentz|LBP|Drude|DHO
Complex dielectric function is described by three parameters \(N_1, E_1, B_1\): $$ \varepsilon = 1 + \frac{2}{\pi} \frac{N_1}{E_1^2 - E^2 - {\rm i} B_1 E} \,. $$ First alternative model name is LBP (Lorentzian Broadened Peak): $$ \varepsilon = 1 + \frac{2}{\pi} \frac{N_1}{E_1^2 + B_1^2/4 - E^2 - {\rm i} B_1 E} \,. $$ In this case model represents Lorentzian broadened dielectric response of discrete excitations : $$ \varepsilon_\mathrm{i} = \frac{N_1 B_1}{2 \pi E_1} \left( \frac{1}{(E_1-E)^2 + B_1^2/4} - \frac{1}{(E_1+E)^2 + B_1^2/4} \right) \,. $$ Second alternative model name is Drude. In this case only paramters \(N_1, B_1\) are generated and model is calculated as follows: $$ \varepsilon = 1 - \frac{2}{\pi} \frac{N_1}{E^2 + {\rm i} B_1 E} \,. $$ Third alternative model name is DHO. In this case the model represents \(m\) coupled dumped harmonic oscillators and dielectric function is calculated as follows: $$ \hat \varepsilon(E) = 1 + \frac{2}{\pi} \vec N^{\rm T} [\tilde S - E^2 \tilde I - {\rm i} E \tilde B ]^{-1} \vec N \,, $$ where \(\vec N\) is vector: $$ \vec N^{\rm T} = (\sqrt{N_1},\sqrt{N_2},\ldots,\sqrt{N_m}) \,, $$ \(\tilde S\) is diagonal matrix $$ \tilde S = \left( \begin{array}{cccc} E_1^2 & 0 & \cdots & 0 \\ 0 & E_2^2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 &\cdots & E_m^2 \end{array} \right) \,, $$ \(\tilde I\) is unit matrix and \(\tilde B\) is symmetric matrix $$ \tilde B = \left( \begin{array}{cccc} B_1 & B_{12} & \cdots & B_{1m} \\ B_{12} & B_2 & \cdots & B_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ B_{1m} & B_{2m} &\cdots & B_m \end{array} \right) \,. $$ Note that for \(m=1\) this option is equivalent to option Lorentz.

attributes

Example

media:
  fL = Lorentz:2
  fD = Drude
newAD2> par
  N1fL = 0          fixed [0,inf) eV2                                                                   
  E1fL = 1          fixed [0,inf) eV                                                                               
  B1fL = 1          fixed (0,inf) eV                                                                               
  N2fL = 0          fixed [0,inf) eV2                                                                   
  E2fL = 1          fixed [0,inf) eV                                                                               
  B2fL = 1          fixed (0,inf) eV                                                                               
  N1fD = 0          fixed [0,inf) eV2                                                                   
  B1fD = 1          fixed (0,inf) eV                                                                               
  N1fC = 0          fixed [0,inf) eV2                                                                   
  E1fC = 1          fixed [0,inf) eV                                                                               
  B1fC = 1          fixed (0,inf) eV                                                                               
  N2fC = 0          fixed [0,inf) eV2                                                                   
  E2fC = 1          fixed [0,inf) eV                                                                               
  B2fC = 1          fixed (0,inf) eV                                                                               
B1_2fC = 0          fixed (-inf,inf) eV                                                                            
  N1fF = 0          fixed [0,inf) eV2                                                                   
  M1fF = 0          fixed (-inf,inf) eV2                                                                
  E1fF = 1          fixed [0,inf) eV                                                                               
  B1fF = 1          fixed (0,inf) eV                                                                               
  N1fA = 0          fixed [0,inf) eV2                                                                   
  E1fA = 1          fixed [0,inf) eV                                                                               
  B1fA = 1          fixed (0,inf) eV                                                                               
  N2fA = 0          fixed [0,inf) eV2                                                                   
  M2fA = 0          fixed (-inf,inf) eV2                                                                
  E2fA = 1          fixed [0,inf) eV                                                                               
  B2fA = 1          fixed (0,inf) eV
newAD2>