Classical Drude-Lorentz model (damping harmonic oscillator)
modelname
Lorentz|LBP|Drude|DHOComplex dielectric function is described by three parameters \(N_1, E_1, B_1\): $$ \varepsilon = 1 + \frac{2}{\pi} \frac{N_1}{E_1^2 - E^2 - {\rm i} B_1 E} \,. $$ First alternative model name is
LBP
(Lorentzian Broadened Peak):
$$
\varepsilon = 1 + \frac{2}{\pi} \frac{N_1}{E_1^2 + B_1^2/4 - E^2 - {\rm i} B_1 E} \,.
$$
In this case model represents Lorentzian broadened dielectric response of discrete excitations
:
$$
\varepsilon_\mathrm{i} = \frac{N_1 B_1}{2 \pi E_1} \left( \frac{1}{(E_1-E)^2 + B_1^2/4} - \frac{1}{(E_1+E)^2 + B_1^2/4} \right) \,.
$$
Second alternative model name is Drude
. In this case only paramters \(N_1, B_1\) are generated
and model is calculated as follows:
$$
\varepsilon = 1 - \frac{2}{\pi} \frac{N_1}{E^2 + {\rm i} B_1 E} \,.
$$
Third alternative model name is DHO
. In this case the model represents \(m\) coupled dumped harmonic oscillators and dielectric function is calculated as follows:
$$
\hat \varepsilon(E) = 1 + \frac{2}{\pi} \vec N^{\rm T} [\tilde S - E^2 \tilde I - {\rm i} E \tilde B ]^{-1} \vec N \,,
$$
where \(\vec N\) is vector:
$$
\vec N^{\rm T} = (\sqrt{N_1},\sqrt{N_2},\ldots,\sqrt{N_m}) \,,
$$
\(\tilde S\) is diagonal matrix
$$
\tilde S = \left(
\begin{array}{cccc}
E_1^2 & 0 & \cdots & 0 \\
0 & E_2^2 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 &\cdots & E_m^2
\end{array}
\right) \,,
$$
\(\tilde I\) is unit matrix and \(\tilde B\) is symmetric matrix
$$
\tilde B = \left(
\begin{array}{cccc}
B_1 & B_{12} & \cdots & B_{1m} \\
B_{12} & B_2 & \cdots & B_{2m} \\
\vdots & \vdots & \ddots & \vdots \\
B_{1m} & B_{2m} &\cdots & B_m
\end{array}
\right) \,.
$$
Note that for \(m=1\) this option is equivalent to option Lorentz
.
attributes
-
number_of_terms
- Adds terms (peaks) and corresponding parameters. -
Asymmetric|A
- Add parameters \(M_2, \dots\) defining asymmetrical peaks (requires LBP model and number of peaks must be higher than 1). Appropriate for modelling of coupled phonon peaks like DHO model but with less number of parameters. -
Fano|F
- Add parameters \(M_1, \dots\) defining asymmetrical peaks (requires LBP model). Appropriate for modelling of Fano resonace between phonon and free carriers. -
ph
- Units 1/cm are used for peak energies \(E_1, \dots\) and broadening parameters \(B_1, \dots\).
Example
media: fL = Lorentz:2 fD = Drude
newAD2> par N1fL = 0 fixed [0,inf) eV2 E1fL = 1 fixed [0,inf) eV B1fL = 1 fixed (0,inf) eV N2fL = 0 fixed [0,inf) eV2 E2fL = 1 fixed [0,inf) eV B2fL = 1 fixed (0,inf) eV N1fD = 0 fixed [0,inf) eV2 B1fD = 1 fixed (0,inf) eV N1fC = 0 fixed [0,inf) eV2 E1fC = 1 fixed [0,inf) eV B1fC = 1 fixed (0,inf) eV N2fC = 0 fixed [0,inf) eV2 E2fC = 1 fixed [0,inf) eV B2fC = 1 fixed (0,inf) eV B1_2fC = 0 fixed (-inf,inf) eV N1fF = 0 fixed [0,inf) eV2 M1fF = 0 fixed (-inf,inf) eV2 E1fF = 1 fixed [0,inf) eV B1fF = 1 fixed (0,inf) eV N1fA = 0 fixed [0,inf) eV2 E1fA = 1 fixed [0,inf) eV B1fA = 1 fixed (0,inf) eV N2fA = 0 fixed [0,inf) eV2 M2fA = 0 fixed (-inf,inf) eV2 E2fA = 1 fixed [0,inf) eV B2fA = 1 fixed (0,inf) eV newAD2>
